Home
Class 12
MATHS
Let In int0^(pi/2) (sinx+cosx)^n dx (n>=...

Let `I_n int_0^(pi/2) (sinx+cosx)^n dx (n>=2)` Then the value of `nI_n-2(n-1)I_(n-2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n)int_(0)^((pi)/(2))(sin x+cos x)^(n)dx(n>=2) Then the value of nI_(n)-2(n-1)I_(n-2) is

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

Let I_(n) =int _(1) ^(e^(2))(ln x)^(n) dx (x ^(2)), then the value of 3I_(n)+nI_(n-1) equals to:

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

If I_(n)=int (logx)^(n)dx , then the value of (I_(n)+nI_(n-1)) is -

If I_(n)=int(sin nx)/(sin x)dx, for n>1, then the value of I_(n)-I_(n-2) is