Home
Class 12
MATHS
lim(n->oo)n^2(x^(1/n)-x^(1/(n+1))),x > 0...

`lim_(n->oo)n^2(x^(1/n)-x^(1/(n+1))),x > 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

lim_(x rarr oo)n^(2)(x^((1)/(n))-x^((1)/((n+1)))),x>0, is equal to (a)0(b)e^(x)(c)(log)_(e)x(d) none of these

lim_(x->oo)(1-x+x.e^(1/n))^n

If f(x)=lim_(n rarr oo)n^(2)(x^((1)/(n))-x^((1)/(n)+1)),x>0 then int xf(x)dx is

lim_(x->oo)(e^x((2^(x^n))^(1/(e^(x)))-(3^(x^n))^(1/(e^(x)))))/(x^n), n in N, is equal to

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

If f (x) = lim _( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of the following is/are true?

If f (x) = lim _( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of the following is/are true?

Let f(x)=(lim)_(n->oo)(2x^(2n)sin1/x+x)/(1+x^(2n))\ then find :\ (lim)_(x->-oo)f(x)