Home
Class 12
MATHS
The value of the integral int0^pi (xdx)/...

The value of the integral `int_0^pi (xdx)/(1+cosalphasinx),0ltaltpi` is (A) `(pia)/sinalpha` (B) `(pia)/(1+sinalpha)` (C) `(pia)/cosalpha` (D) `(pia)/(1+cosalpha)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_0^pix/(1-cosalphasinx)dx=(pi(pi-alpha))/(sinalpha)

If intsinx/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+C , then value of (A,B) is (A) (-sinalpha,cosalpha) (B) (-cosalpha,sinalpha) (C) (sinalpha,cosalpha) (D) (cosalpha,sinalpha)

If intsinx/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+C , then value of (A,B) is (A) (-sinalpha,cosalpha) (B) (-cosalpha,sinalpha) (C) (sinalpha,cosalpha) (D) (cosalpha,sinalpha)

If (2sinalpha)/(1+cosalpha+sinalpha) =x, then (1-cosalpha+sinalpha)/(1+sinalpha) =

If (2sinalpha)/(1+cosalpha+sinalpha)=x then find (1-cosalpha+sinalpha)/(1+sinalpha)

If pi,t h e nsqrt((1-cosalpha)/(1+cosalpha))+sqrt((1+cosalpha)/(1-cosalpha)) is equal to 2/(sinalpha) (b) -2/(sinalpha) (c) 1/(sinalpha) (d) -1/(sinalpha)

Givent that pi/2 lt alphaltpi then the expression sqrt((1-sinalpha)/(1+sinalpha))+sqrt((1+sinalpha)/(1-sinalpha)) (A) 1/(cosalpha) (B) - 2/(cosalpha) (C) 2/(cosalpha) (D) does not exist

If (2sinalpha)/({1+cosalpha+sinalpha})=y , then ({1-cosalpha+sinalpha})/(1+sinalpha) =

If cotalpha=(15)/(8) , then ((2+2sinalpha)(1-sinalpha))/((1+cosalpha)(2-2cosalpha))=?