Home
Class 12
MATHS
The value of lim(x->oo) x^n/e^x...

The value of `lim_(x->oo) x^n/e^x`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x->oo) (x + e^x)^(2/x) is-

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

The value of lim_(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (where n in N) is (a) logn(2/3) (b) 0 (c) nlogn(2/3) (d) none of defined

The value of lim_(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (where n in N) is (a)logn(2/3) (b) 0 (c) nlogn(2/3) (d) none of defined

The value of lim_(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (where n in N) is (a) logn(2/3) (b) 0 (c) nlogn(2/3) (d) none of defined

The value of lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n)) (where n in N ) is

The value of lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n)) (where n in N ) is

The value of lim_(x rarr oo)(x^(n))/(e^(x))

The value of lim_(x rarr oo)(x^(n)+nx^(n-1)+1)/(e^(|x|)),n in1 is

The value of lim_(xto oo)e^(-x) is