Home
Class 12
MATHS
Let f :(4,6) uu (6,8) be a function def...

Let `f :(4,6) uu (6,8)` be a function defined by `f(x) = x+[(x)/(2)]` where [.] denotes the greatest integer function, then `f^(-1)(x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f : (4, 6)to(6, 8) be a function defined by f(x) x+[x/2] (where [.] denotes the greatest integer function), then f^(-1)(x) is equal to

Let f:(6, 8)rarr (9, 11) be a function defined as f(x)=x+[(x)/(2)] (where [.] denotes the greatest integer function), then f^(-1)(x) is equal to

Let f:(6, 8)rarr (9, 11) be a function defined as f(x)=x+[(x)/(2)] (where [.] denotes the greatest integer function), then f^(-1)(x) is equal to

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f:(4,6)vec(6,8) be a function defined by f(x)=x+[x/2]dotw h e r e[dot] denotes the greatest integer function, then f^(-1)(x) is equal to (A) x-2 (B) x-[x//2] (C) -x-2 (D) none of these

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f : [2, 4) rarr [1, 3) be a function defined by f(x) = x - [(x)/(2)] (where [.] denotes the greatest integer function). Then f^(-1) equals