Home
Class 12
MATHS
If Delta(r)=|(r-1,n,6),((r-1)^(2),2n^(2)...

If `Delta_(r)=|(r-1,n,6),((r-1)^(2),2n^(2),4n-2),((r-1)^(3),3n^(3),3n^(2)-3n)|` then `sum_(r=1)^(n)Delta_(r)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let Delta_(r)=|(r-1,n,6),((r-1)^(2),2n^(2),4n-2),((r-1)^(3),3n^(3),3n^(2)-3n)| Show that sum_((r=1)) ^(n) Delta_(r) is constant.

Let Delta_(a)=|{:((a-1),n,6),((a-1)^(2), 2n^(2),4n-2),((a-1)^(3),3n^(3),3n^(2)-3n):}| the value of sum_(a=1)^(n)Delta_(a) is

Let Delta_(a)=|{:((a-1),n,6),((a-1)^(2), 2n^(2),4n-2),((a-1)^(3),3n^(3),3n^(2)-3n):}| the value of sum_(a=1)^(n)Delta_(a) is

Let Delta_(a)=|{:((a-1),n,6),((a-1)^(2), 2n^(2),4n-2),((a-1)^(3),3n^(3),3n^(2)-3n):}| the value of sum_(a=1)^(n)Delta_(a) is

" Let " Delta_(r)=|{:(r-1,,n,,6),((r-1)^(2),,2n^(2),,4n-2),((r-1)^(2),,3n^(3),,3n^(2)-3n):}|. " Show that " Sigma_(r=1)^(n) Delta_(r) is constant.

Statement -1 Let Delta _(r)=|{:((r-1),n!,6),((r-1)^(2),(n!)^(2),4n-2),((r-1)^(3),(n!)^(3),3n^(2)-2n):}| "then" overset(n+1)underset(r=1)PiDelta_(r)=0 Statement -2 overset(n+1)underset(r=1)Pi Delta_(r)=Delta_(2).Delta_(3).Delta_(4)cdotsDelta_(n+1)

Let Delta_r=|[r-1,n,6],[(r-1)^2,2n^2,4n-2],[(r-1)^3,3n^3,3n^2-3n]| . Show that sum_(r=1)^n Delta_r is contant.

Let Delta_r=|[r-1,n,6],[(r-1)^2,2n^2,4n-2],[(r-1)^3,3n^3,3n^2-3n]| . Show that sum_(r=1)^n Delta_r is contant.

Let "Delta"_r=|r-1n6(r-1)^2 2n^2 4n-2(r-1)^2 3n^3 3n^2-3n|dot Show that sum_(r=1)^n"Delta"_r is contant.

Let "Delta"_r=|r-1n6(r-1)^2 2n^2 4n-2(r-1)^2 3n^3 3n^2-3n|dot Show that sum_(r=1)^n"Delta"_r is contant.