Home
Class 11
MATHS
If f : RR to RR is defined by f (x) = 2x...

If f : `RR to RR` is defined by f (x) = 2x -3, then prove that f is a bijection and find its inverse.

Promotional Banner

Similar Questions

Explore conceptually related problems

If : RR to RR is defined by f(x) = 3x-5, prove that f is a bijection and find its inverse.

If f:R to R is defined by f(x) = 3x - 5 , prove that f is a bijection and find its inverse .

If f:R rarr R is defined by f(x)=2x-3 prove that f is a bijection and find its inverse.

If RtoR is defined byf (x) = 3x + 1. Prove that f is bijection and find its inverse.

If f:R-R is defined by f(x)=2x+7. Prove that f is a bijection. Also, find the inverse of f .

If f: Rvec is defined by f(x)=2x+7. Prove that f is a bijection. Also, find the inverse of fdot

If f:R rarr is defined by f(x)=2x+7. Prove that f is a bijection.Also,find the inverse of f

Let f: RR to RR be defined by f(x)=1 -|x|. Then the range of f is