Home
Class 12
MATHS
The lines (x-1)/3=(y-1)/(-1)=(z+1)/0 and...

The lines `(x-1)/3=(y-1)/(-1)=(z+1)/0 and (x-4)/2=(y+0)/0=(z+1)/3` (A) intersect at (4,0,-1) (B) intersect at (1,1,-1) (C) do not intersect (D) intersect

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the lines (x-1)/(2)=(y-2)/(y-1)=(z-3)/(4) and (x-4)/(5)=(y-1)/(2)=z intersect

Show that the lines (x-1)/(3)=(y-1)/(-1)=(z+1)/(0) and (x-4)/(2)=(y)/(0)=(z+1)/(3) intersect and hence find the point of intersection.

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

Show that the lines (x-1)/3=(y+1)/2=(z-1)/5a n d(x+2)/4=(y-1)/3=(z+1)/(-2) do not intersect.

Show that the lines (x-1)/3=(y+1)/2=(z-1)/5a n d(x+2)/4=(y-1)/3=(z+1)/(-2) do not intersect.

Show that the lines (x-1)/3=(y+1)/2=(z-1)/5a n d(x+2)/4=(y-1)/3=(z+1)/(-2) do not intersect.

If the lines (x-1)/(2)=(y-2)/(3)=(z-3)/(4) and (x-4)/(5)=(y-1)/(2)=(z-0)/(1) intersect, then the coordinates of their point of intersection are -