Home
Class 12
MATHS
If 1 +x^4 +x^5 =sum(i=0)^5 ai (1 + x)^i,...

If `1 +x^4 +x^5 =sum_(i=0)^5 a_i (1 + x)^i`, for all x in R, then `a_2` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1+x^(4)-x^(5)=sum_(i=0)^(5)a_(i)(1+x)^(i) for all x""inR , then a_(2) is equal to ________

If 1+x^(4)+x^(5)=sum_(i=0)^(5)a_(i)(1+x)^(i) for all x""inR , then a_(4) is equal to ________

For x in R, x ne -1 , if (1 + x)^(2016) = sum_(i = 0)^(2016) a_(i)x^(i) , then a_(17) is equal to :

FOr xin r, x != -1 , If (1+x)^(2016)+x(1+x)^(2015)+x^2(1+x)^(2014)+.......+x^(2016)=sum_(i=0)^2016 a_i x^i , then a_17 is equal to -

If f(x)= prod_(i=1)^3 (x-a_i) +sum_(i=1)^3a_i-3x where a_i lt a_(i+1) forall i=1,2,. . . then f(x)=0 has

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 , then sum_(i=1)^(2n)x_(i) is :

If sum_(i=1)^(2 n) cos ^(-1) x_(i)=0, then sum_(i=1)^(2 pi) x_(i)=

If f(x) =Pi_(i=1)^3(x-a_i) + sum_(i=1)_3 a_i - 3x where a_i < a_(i+1) for i = 1,2, then f(x) = 0 have

If f(x) =Pi_(i=1)^3(x-a_i) + sum_(i=1)_3 a_i - 3x where a_i < a_(i+1) for i = 1,2, then f(x) = 0 have