Home
Class 11
MATHS
If f(9)=9 and f'(9)=1 then lim(x rarr 9)...

If `f(9)=9` and `f'(9)=1` then `lim_(x rarr 9) (3-sqrt(f(x)))/(3-sqrtx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (9) = 9, f '(9) = 1, then lim_(x rarr 9) (8-sqrt(f(x)))/(3-sqrtx) =

If f be a function such that f(9) = 9 and f'(9) = 3, then : lim_(x rarr 9) (sqrt(f(x)) - 3)/(sqrt(x) - 3) is :

If f(9) =9, f^(')(9) = 4 , then lim_(x rarr 9)(sqrt(f(x))-3)/(sqrtx - 3) =

If f(9)=9 and f'(9)=4 then lim_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to -

If f(9)=9 , f'(9)= 4 then lim _ (x rarr9) (sqrt f(x) -3)/(sqrt(x)-3) =_____.

If f(9)=9" and f'"(9)=4 then Lt_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

If f(9)=9,f'(9)=4,then(lim)_(x rarr9)(sqrt(f(x))-3)/(sqrt(x)-3)=

If f be a function such that f (9) =9 and f '(9) = 3, then lim _(x to 9) ( (sqrt ( f (x)) - 3))/( sqrtx - 3) is equal to : a)9 b)3 c)1 d)6

If f be a function such that f(9)=9 and f'(9)=3 , then lim_(xto9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to