Home
Class 12
MATHS
log4+ (1+1/(2x))log3=log( 3^(1/x)+27)...

`log4+ (1+1/(2x))log3=log( 3^(1/x)+27)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation for x:log4+(1+(1)/(2x))log3=log(root(z)(3)+27)

Evaluate lim_(x rarr-1)(log x^(2)-log((1)/(x^(4)))+log3)/(log((x^(3))/(-3)))

Evaluate: lim_(x rarr -1) (logx^(2)-log((1)/(x^(4)))+log3)/(log((x^(3))/(-3))) .

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

(1+(1)/(2x))log_(10)3+log_(10)2=log_(10)(27-sqrt(3))

If x gt 0 and log_(3) (x)+log_(3)(x^(1//3))+log_(3)(x^(1//9))+log_(3)(x^(1//27))+...=6 , then x=

If x = log_((1)/(2)).(4)/(3).log_(2).(1)/(3). log_((2)/(3)) 0.8 , then ______.

Solve log_4 (8)+log_4 (x+3)-log_4 (x-1)=2