Home
Class 11
MATHS
The value of the definite integral int0^...

The value of the definite integral `int_0^(pi/3)ln(1+sqrt(3)tanx)dx` equals -

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the definite integral int_(0)^((pi)/(3))ln(1+sqrt(3)tan x)dx equals -

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is (a) sqrt(2)pi (b) pi/(sqrt(2)) (c) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definte integral int_(0)^((pi)/(2))ln(1+sqrt(3)tan theta)dx, is equal to (pi)/(p)log_(e)q where q and p prim then (q+p) is equal to

int_(0)^(pi//3) [sqrt(3)tanx]dx=

int_(0)^(pi//3) [sqrt(3)tanx]dx=

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))