Home
Class 12
MATHS
If alpha and beta are non-zero real numb...

If `alpha and beta` are non-zero real number such that `2(cos beta-cos alpha)+cos alpha cos beta=1.` Then which of the following is true?

A

`sqrt(3) tan ((alpha)/(2))-tan((beta)/(2))=0`

B

`tan((alpha)/(2)) - sqrt(3) tan((beta)/(2)) = 0`

C

`tan((alpha)/(2)) + sqrt(3)((beta)/(2))=0`

D

`sqrt(3) tan((alpha)/(2))+ tan((beta)/(2))=0`

Text Solution

Verified by Experts

The correct Answer is:
B, C

We have, `2(cos beta - cos alpha)+ cos alpha cos beta = 1`
or `4(cos beta - cos alpha) + 2 cos alpha cos beta = 2`
`rArr 1-cos alpha + cos beta - cos alpha cos beta = 2`
`= 3+3 cos alpha - 3 cos beta - 3cos alpha cos beta`
`rArr (1-cos alpha) (1+ cos beta)=3(1+cos alpha) (1-cos beta)`
`rArr ((1-cos alpha))/((1+cos alpha)) = (3(1-cos beta))(1+cos beta))`
`rArr tan^(2) (alpha)/(2) = 3 tan^(2)(beta)/(2)`
`therefore tan.(alpha)/(2) pm sqrt(3) tan.(beta)/(2) =0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are non-zero real number such that 2(cos beta-cos alpha)+cos alpha cos beta=1. Then which of the following is treu?

If f(alpha,beta)=cos^(2)alpha+sin^(2)alpha cos2 beta then which of the following is incorrect

alpha and beta are acute angles and cos2 alpha=(3cos2 beta-1)/(3-cos2 beta) then tan alpha cot beta=

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

If alpha, beta, gamma are three real numbers and A=[(1,cos (alpha-beta),cos(alpha-gamma)),(cos (beta-alpha),1,cos (beta-gamma)),(cos (gamma-alpha),cos (gamma-beta),1)] then which of following is/are true ?

Prove that |cos alpha-cos beta|<=| alpha-beta|

If cos alpha+cos beta=0=sin alpha+sinbeta, then cos2alpha+cos 2beta=

If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then one of the values of tan ((theta )/(2)) is

If alpha,beta,gamma are three real numbers and A=[1"cos"(alpha-beta)"cos"(alpha-gamma)cos(beta-alpha)1"cos"(beta-gamma)"cos"(gamma-alpha)"cos"(gamma-beta)1] , then which of following is/are true? A is singular b. A is symmetric c. A is orthogonal d. A is not invertible