Home
Class 12
MATHS
Let a ,\ b ,\ c be three non-zero real n...

Let `a ,\ b ,\ c` be three non-zero real numbers such that the equation `sqrt(3)\ acosx+2\ bsinx=c ,\ x in [-pi/2,pi/2]` , has two distinct real roots `alpha` and `beta` with `alpha+beta=pi/3` . Then, the value of `b/a` is _______.

Text Solution

Verified by Experts

The correct Answer is:
`(0.5)`

We have, `alpha, beta` are the roots of
`sqrt(3) a cos x + 2b sin x = c`
`therefore sqrt(3) a cos alpha + 2b sin alpha sin alpha = c" "…..(ii)`
and `sqrt(3) a cos beta + 2b sin beta= c " "……(i)`
On subtracting Eq. (ii) form Eq (i) we get
`sqrt(3)a (cos alpha -cos beta) + 2b (sin alpha - sinbeta) = 0`
`rArr sqrt(3)a(-2sin ((alpha + beta)/(2))) sin ((alpha +bet)/(2))+2b(2cos((alpha+beta)/(2)))sin ((alpha-beta)/(2))=0`
`rArr sqrt(3) a sin ((alpha+beta)/(2)) = 2b cos ((alpha+beta)/(2))`
`rArr tan ((alpha+ beta)/(2)) = (2b)/(sqrt(3a))`
`rArr tan((pi)/(6)) = (2b)/(sqrt(3a))[because alpha+ beta = (pi)/(3), given]`
`rArr (1)/(sqrt(3)) = (2b)/(sqrt(3a)) rArr (b)(a) = (1)/(2)`
`rArr (b)/(a) = 0.5`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a,b,c be three non-zero real numbers such that the equation sqrt(3)a cos x+2b sin x=c,x in[-(pi)/(2),(pi)/(2)] has two distinct real roots alpha and beta with alpha+beta=(pi)/(3). Then,the value of (b)/(a) is

If 2 sin 2alpha=tan beta,alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

If a,b are non zero real numbers and alpha, beta the roots of x^(2)+ax+b=0 , then

Let a,b,c be real if ax^(2)+bx+c=0 has two real roots alpha and beta where a lt -2 and beta gt2 , then

ax^(2)+bx+c=0 has real and distinct roots alpha and beta(beta>alpha) .further a>0,b<0,c<0 then

If the roots alpha and beta of the equation , x^(2) - sqrt(2) x + c = 0 are complex for some real number c ne 1 and |(alpha - beta)/( 1 - alpha beta)| = 1, then a value of c is :

If the function f(x) = x^3-9x^2 +24x + c has three real and distinct roots alpha,beta and gamma, then the value of [alpha]+[beta]+[gamma] is

Let a,b,c be real.If ax^(2)+bx+c=0 has two real roots alpha and beta, where alpha(:-1 and beta:)1 ,then show that 1+(c)/(a)+|(b)/(a)|<0