Home
Class 12
MATHS
Find the domain and range of f(x) = sin...

Find the domain and range of `f(x) = sin^-1 (log [x]) + log (sin^-1 [x])`, where [.] denotes the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=sin^-1(log [x])+log(sin^-1[x]), (where [,] denotes the greatest integer function) is

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=log_([x-1])sin x, where [.1 denotes the greatest integer.

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function,is

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.