Home
Class 12
MATHS
If A=[costheta-sinthetasinthetacostheta]...

If `A=[costheta-sinthetasinthetacostheta]` , then `A^T+A=I_2` , if `theta=npi,\ \ n in Z` (b) `theta=(2n+1)pi/2,\ \ n in Z` (c) `theta=2n\ pi+pi/3,\ \ n in Z` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[cos theta-sin theta sin theta cos theta], then A^(T)+A=I_(2), if theta=n pi,n in Z(b)theta=(2n+1)(pi)/(2),quad n in Z(c)theta=2n pi+(pi)/(3),quad n in Z(d) none of these

The general solution of the equation 7cos^2theta+3sin^2theta=4 is theta=2npi+-pi/6,\ n Z b. theta=2npi+-(2pi)/3,\ n Z c. theta=2npi+-pi/3,\ n Z d. none of these

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2x=0 if theta=n pi,n in IQ(b)A=(2n+1)pi,n in Itheta=2n pi,n in I(d) none of these

Consider the complex number z = (1 - isin theta)/(1+ icos theta) . If agrument of z is pi/4 , then (a) theta = npi, n in I only (b) theta= (2n + 1), n in I only (c) both theta= npi and theta = (2n + 1)(pi)/(2), n in I (d) none of these

The general solution of cosxcos6x=-1 is (a) x=(2n+1)pi,n in Z (b) x=2npi,n in Z (c) x=npi,n in Z (d) none of these

The general solution of cosxcos6x=-1 is x=(2n+1)pi,n in Z x=2npi,n in Z x=npi,n in Z (d) none of these

The value(s) of theta , which satisfy 3-2\ costheta-4sintheta-cos2theta+sin2theta=0 is/are theta=2npi; n in I (b) 2npi+pi/2; n in I 2npi-pi/2; n in I (d) npi: n in I

The value(s) of theta , which satisfy 3-2\ costheta-4sintheta-cos2theta+sin2theta=0 is/are theta=2npi; n in I (b) 2npi+pi/2; n in I 2npi-pi/2; n in I (d) npi: n in I

cot theta=sin 2 theta(theta neq n pi, n in z), if theta=

If sin^3theta+sinthetacos^2theta=1,t h e ntheta is equal to (n in Z) (a) 2npi (b) 2npi+pi/2 (c) 2npi-pi/2 (d) npi