Home
Class 12
MATHS
If two circle x^(2)+y^(2)+2gx +2fy=0 and...

If two circle `x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0` touch each other then f'g =fg'.

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: If two circles x^(2)+y^(2)+2gx+2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other,then f'g=fg' .Statement 2: Two circles touch other if the line joining their conters is perpendicular to all possible common tangents.

If the circles x^(2)+y^(2)+2gx+2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other, then

If the circles x ^(2) +y^(2) +2gx +2fy =0 and x ^(2) +y^(2) +2g'x+ 2f'y=0 touch each other then-

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.

If the two circles x^(2)+y^(2)+2gz+2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then show that f'g=fg'

If two cricles x^2 + y^2 + 2gx + 2fy = 0 and x^2 +y^2 + 2g'x + 2f'y = 0 touch each other, then

If the circles x^(2)+y^(2)+2gx+2fy=0and x^(2)+y^(2)+2g'x+2f'=0 touch each other then prove that f' f = fg .