Home
Class 7
MATHS
-3a^(2)-[3a^(2)-(a^(2)+b^(2))...

`-3a^(2)-[3a^(2)-(a^(2)+b^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (3a+7b)/(3a-7b)=(4)/(3) then find the value of the ratio (3a^(2)-7b^(2))/(3a^(2)+7b^(2))

If a, b, c are the sides of Delta ABC such that 3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0 , then Triangle ABC is

If a, b, c are the sides of Delta ABC such that 3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0 , then Triangle ABC is

If a, b, c are the sides of Delta ABC such that 3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0 , then Triangle ABC is

If a, b, c are the sides of Delta ABC such that 3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0 , then If sides of DeltaPQR are a, b sec C, c cosec C. Then, area of DeltaPQR is

If a, b, c are the sides of Delta ABC such that 3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0 , then If sides of DeltaPQR are a, b sec C, c cosec C. Then, area of DeltaPQR is

If D is the mid-point of the side BC of triangle ABC and AD is perpendicular to AC, then 3b^(2)=a^(2)-c( b )3a^(2)=b^(2)3c^(2)b^(2)=a^(2)-c^(2)(d)a^(2)+b^(2)=5c^(2)

One of the factors of a^(3) - b^(3) - a^(2)b + ab^(2) + a^(2) - b^(2) is

Locus of centroid of the triangle whose vertices are (a cos t,a sin t),(b sin t-b cos t)and(1,0) where t is a parameter is: (3x-1)^(2)+(3y)^(2)=a^(2)-b^(2)(3x-1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)-b^(2)