Home
Class 12
MATHS
Show that : sin^8 A-cos^8 A = (sin^2 A -...

Show that : `sin^8 A-cos^8 A = (sin^2 A - cos^2 A) (1-2 sin^2 A*cos^2 A)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A*cos^(2)A)

Show that: sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A cos^(2)A)

Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A)

Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A) (ii) (1)/(sec A-tan A)-(1)/(cos A)=(1)/(cos A)-(1)/(sec A + tan A)

Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A) (ii) (1)/(sec A-tan A)-(1)/(cos A)=(1)/(cos A)-(1)/(sec A + tan A)

prove : sin^8θ-cos^8θ = (sin^2 theta - cos^2 theta) (1- 2 sin^2 theta cos^2 theta)

sin ^ (8) A-cos ^ (8) A = (sin ^ (2) A-cos ^ (2) A) (1-2sin ^ (2) A cos ^ (2) A)

prove that sin^(8)x-cos^(8)x=(sin^(2)x-cos^(2)x)(1-2sin^(2)x cos^(2)x)

Prove that : sin^8 theta- cos^8 theta= (sin^2 theta- cos^2 theta)(1-2 sin^2 theta cos^2 theta) .

Prove the following identities : (sin A + cos A)/ (sin A - cos A) + (sin A - cos A)/ (sin A + cos A) = (2)/ (2 sin^(2) A - 1)