Home
Class 11
MATHS
If the lines L1a n dL2 are tangents to 4...

If the lines `L_1a n dL_2` are tangents to `4x^2-4x-24 y+49=0` and are normals for `x^2+y^2=72 ,` then find the slopes of `L_1` and `L_2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the lines L_1 and L_2 are tangents to 4x^2-4x-24 y+49=0 and are normals for x^2+y^2=72 , then find the slopes of L_1 and L_2dot

If the lines L_(1) and L_(2) are tangents to 4x^(2)-4x-24y+49=0 and are normals for x^(2)-y^(2)=72, then find the slopes of L_(1) and L_(2).

The combined equation of the lines l_1a n dl_2 is 2x^2+6x y+y^2=0 and that of the lines m_1a n dm_2 is 4x^2+18 x y+y^2=0 . If the angle between l_1 and m_2 is alpha then the angle between l_2a n dm_1 will be pi/2-alpha (b) 2alpha pi/4+alpha (d) alpha

The combined equation of the lines l_1a n dl_2 is 2x^2+6x y+y^2=0 and that of the lines m_1a n dm_2 is 4x^2+18 x y+y^2=0 . If the angle between l_1 and m_2 is alpha then the angle between l_2a n dm_1 will be

The combined equation of the lines l_1a n dl_2 is 2x^2+6x y+y^2=0 and that of the lines m_1a n dm_2 is 4x^2+18 x y+y^2=0 . If the angle between l_1 and m_2 is alpha then the angle between l_2a n dm_1 will be

The combined equation of the lines l_1a n dl_2 is 2x^2+6x y+y^2=0 and that of the lines m_1a n dm_2 is 4x^2+18 x y+y^2=0 . If the angle between l_1 and m_2 is alpha then the angle between l_2a n dm_1 will be

The combined equation of the lines l_1a n dl_2 is 2x^2+6x y+y^2=0 and that of the lines m_1a n dm_2 is 4x^2+18 x y+y^2=0 . If the angle between l_1 and m_2 is alpha then the angle between l_2a n dm_1 will be

The combined equation of the lines l_1a n dl_2 is 2x^2+6x y+y^2=0 and that of the lines m_1a n dm_2 is 4x^2+18 x y+y^2=0 . If the angle between l_1 and m_2 is alpha then the angle between l_2a n dm_1 will be

Let l_(1) and l_(2) be the two lines which are normal to y^(2)=4x and tangent to x^(2)=-12y respectively (where, l_(1) and l_(2) are not the x - axis). Then, the product of the slopes of l_(1)and l_(2) is