Home
Class 12
MATHS
If x sqrt(1+y)+y sqrt(1+x)=0 and x!=y ,t...

If `x sqrt(1+y)+y sqrt(1+x)=0` and `x!=y` ,then `(1+x)^(2)(dy)/(dx)+(3)/(2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(y+1)+y sqrt(x+1)=0 & x!=y, then (dy)/(dx)=

If (x)/(sqrt( 1+x)) +(y)/( sqrt(1+y))=0and x ne y ,then (dy)/(dx)=

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

If y=sqrt((1-x)/(1+x)), then ((1-x)/(y))^(2)(dy)/(dx)+y+2=

If x=sqrt(1-y^2) , then (dy)/(dx)=

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))