Home
Class 12
MATHS
If a=lim(x rarr oo)(sin x)/(x)&b=lim(x r...

If `a=lim_(x rarr oo)(sin x)/(x)&b=lim_(x rarr0)(sin x)/(x) Then int_(a)^(b)(log(1+x))/(1+x^(2))dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin x)/(x)=1

lim_(x rarr0)(sin x)/(x^(2))

lim_(x rarr0)(sin^(2)x)/(x)=

lim_(x rarr0)x log(sin x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(sin x-x)/(x^(3))

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)x sin((1)/(x))