Home
Class 11
MATHS
Suppose a differntiable function f(x) sa...

Suppose a differntiable function `f(x)` satisfies the identity `f(x+y)=f(x)+f(y)+xy^(2)+xy` for all real `x` and `y` .If `lim_(x rarr0)(f(x))/(x)=1` then `f'(3)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f is a function that satisfies the equation f(x+y)=f(x)+f(y)+x^(2)y+xy^(2)? for all real numbers x and y. If lim_(x rarr0)(f(x))/(x)=1 then

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f'(3) is

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

Suppose that fis differentiable function with the proporty f(x+y)=f(x)+f(y)+x^(2)y and lim_(x rarr0)(f(x))/(x)=0 ,then find the value of f'(10)

Suppose that f is differentiable function with the property f(x+y)=f(x)+f(y) and lim_(x rarr0)(f(x))/(x)=100 ,then f'(2) is equal to N ,then the sum of digits of N is....

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

Let f(x+y)=f(x)f(y) and f(x)=1+xg(x)G(x) where lim_(x rarr0)g(x)=a and lim_(x rarr o)G(x)=b Then f'(x) is

If f(x) be a differentiable function for all positive numbers such that f(x.y)=f(x)+f(y) and f(e)=1 then lim_(x rarr0)(f(x+1))/(2x)

Let f(x) be differentiable function such that f((x+y)/(1-xy))=f(x)+f(y)AA x and y, if lim_(x rarr0)(f(x))/(x)=(1)/(3)thenf'(1) equals