Home
Class 12
MATHS
int(sin12 theta-sin9 theta)/(2cos7 theta...

`int(sin12 theta-sin9 theta)/(2cos7 theta-1)*d theta" is equal to" `
(1) `(cos2 theta)/(2)+(cos5 theta)/(5)+c`
( 2) `(cos5 theta)/(2)-(cos2 theta)/(5)+c`
(3) `(cos2 theta)/(5)-(cos5 theta)/(2)+c`
(4) `(cos2 theta)/(2)-(cos5 theta)/(5)+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

5sin theta+2cos theta=5

4(sin^(2)theta+cos theta)=5

cos theta+sin theta=cos2 theta+sin2 theta

(1+sin2 theta-cos2 theta)/(1+sin2 theta+cos2 theta)=tan theta

2(cos theta+cos2 theta)+(1+2cos theta)sin2 theta=2sin theta

cos (2 theta) cos ((theta) / (2)) - cos (3 theta) cos ((9 theta) / (2)) = sin (5 theta) sin ((5 theta) / (2))

(cos ec theta+sin theta)/(cos ec theta-sin theta)=(5)/(2), find value of sin theta

(sin5 theta-2sin3 theta + sin theta) / (cos5 theta-cos theta) = tan theta

((cos3 theta+i sin3 theta)^(5)(cos theta-i sin theta)^(3))/((cos5 theta+i sin5 theta)^(7)(cos2 theta-i sin2 theta)^(5))