Home
Class 11
MATHS
f is a strictly monotonic differentiable...

`f` is a strictly monotonic differentiable function with `f^(prime)(x)=1/(sqrt(1+x^3))dot` If `g` is the inverse of `f,` then `g^(x)=` `(2x^2)/(2sqrt(1+x^3))` b. `(2g^2(x))/(2sqrt(1+g^2(x)))` c. `3/2g^2(x)` d. `(x^2)/(sqrt(1+x^3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

f is a strictly monotonic differentiable function with f'(x)=(1)/(sqrt(1+x^(3)))* If g is the inverse of f, then g^(x)= a.(2x^(2))/(2sqrt(1+x^(3))) b.(2g^(2)(x))/(2sqrt(1+g^(2)(x))) c.(3)/(2)g^(2)(x) d.(x^(2))/(sqrt(1+x^(3)))

If f(x)=(x)/(sqrt(1-x^(2))),g(x)=(x)/(sqrt(1+x^(2))) then ( fog )(x)=

g(x) is the inverse of function f(x), find (d^(2)f)/(dx^(2))(1),g(x)=x^(3)+e^((x)/(2))

f(x)=1/abs(x), g(x)=sqrt(x^(-2))

If g is the inverse function of f an f'(x)=(x^(5))/(1+x^(4)). If g(2)=a, then f'(2) is equal to

int_( then )(x-1)(dx)/(x^(2)(sqrt(2x^(2)-2x+1)))=(sqrt(f(x)))/(g(x))+c

Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to a.(1)/(4) b.0 c.(1)/(3) d.4

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to- (1)/(4)(b)0 (c) (1)/(3)(d)4