Home
Class 11
MATHS
The number of distinct real values of la...

The number of distinct real values of `lambda` for which the vectors -`lambda^(2)bar(i)+bar(j)+bar(k),bar(i)-lambda^(2)bar(j)+bar(k)` and `bar(i)+bar(j)-lambda^(2)bar(k)` are coplanar

Promotional Banner

Similar Questions

Explore conceptually related problems

The vectors bar(i)+4bar(j)+6bar(k),2bar(i)+4bar(j)+3bar(k) and bar(i)+2bar(j)+3bar(k) form

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

The reciprocal of bar(a) where bar(a)=-bar(i)+bar(j)+bar(k),bar(b)=bar(i)-bar(j)+bar(k),bar(c)=bar(i)+bar(j)+bar(k) is

For any vector bar(r) , (bar(r)*bar(i))bar(i)+(bar(r)*bar(j))bar(j)+(bar(r)*bar(k))bar(k)=

The lines bar(r)=bar(i)+bar(j)-bar(k)+s(3bar(i)-bar(j)) and bar(r)=4bar(i)-bar(k)+t(2bar(i)+3bar(k))

If p=bar(i)+abar(j)+bar(k) and q-bar(i)+bar(j)+bar(k) then |bar(p)+bar(q)|=|bar(p)|+|bar(q)| is true for

If p=bar(i)+abar(j)+bar(k) and q=bar(i)+bar(j)+bar(k) then |bar(p)+bar(q)|=|bar(p)|+|bar(q)| is true for

If 3bar(i)+3bar(j)+sqrt(3)bar(k),bar(i)+bar(j),sqrt(3)bar(i)+sqrt(3)bar(j)+lambdabar(k) are coplanar vectors then lambda=

bar(b)=bar(i)-2bar(j)-3bar(k),bar(b)=2bar(i)+bar(j)-bar(k),bar(c)=bar(i)+ 3bar(j)-2bar(k) then bar(a).(bar(b)xxbar(c))