Home
Class 12
MATHS
int e^(3x)(cos2x+sin2x)dx=e^(3x)*g(x)+c"...

`int e^(3x)(cos2x+sin2x)dx=e^(3x)*g(x)+c" Then "13[g(0)+g(pi/4)]`=

Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos x+3sin x)e^(3x)dx

int e^(3x)cos4xdx=e^(3x)(A sin4x+B cos4x)+c

int(e^(x)+2sin x-3cos x)dx

If int e^(2x)(cos x+7sin x)dx=e^(2x)g(x)+c where c is constant of integration then g(0)+g((pi)/(2))=

int(x(sin x+cos x)+cos x)/(e^(-x)+x sin x+cos x)dx=f(x)+log|g(x)|+c then f(x)+g(x)=

G) int(sin x)/(cos(x-a))dx

If int e^(3x)sin xdx=Ge^(3x)sin x+He^(3x)cos x+C , C in R . Then G =......, H =... ?

if int e^(sin x)(x cos^(3)x-sin x)/(cos^(2)x)dx and f(0)=1 then f(pi)= is

(i) int e^(3x) cos 5x dx (ii) int e^(3x) sin 4x dx