Home
Class 11
MATHS
int(0)^(1)(e^(x)*x)/((1+x)^(2))dx...

`int_(0)^(1)(e^(x)*x)/((1+x)^(2))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

6*int_(0)^(1)(e^(2x))/(1+e^(2x))dx

If int_(0)^(1)(e^(x)dx)/(sqrt(1-x^(2)))=A then int_(0)^( pi)(e^(|sin x|)+e^(|cos x|))dx=

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)x e^(x)dx=

Evaluate the integrals : I = int_(0)^(1) (e^(x))/( 1 + e^(2x)) dx ,

int_(0)^(1)(e^(x)dx)/(1+e^(x))

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

int_(0)^(1)(e^(x))/((2+e^(x)))dx