Home
Class 12
MATHS
If a=lim(x->oo) sinx/x & b=lim(x->0) sin...

If `a=lim_(x->oo) sinx/x` & `b=lim_(x->0) sinx/x` Then `int (ab log(1+x)+x^2)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)|sinx|/x

If a=lim_(x rarr oo)(sin x)/(x)&b=lim_(x rarr0)(sin x)/(x) Then int_(a)^(b)(log(1+x))/(1+x^(2))dx is equal to

If a=lim_(x rarr oo)(sin x)/(x)&b=lim_(x rarr0)(sin x)/(x) Then int_(a)^(b)(log(1+x))/(1+x^(2))dx is equal to

lim_(xrarr0) (sinx)/(x)= ?

lim_(xoto0) x log_(e) (sinx) is equal to

lim_(x to 0) (sin(sinx))/x

lim_(xrarr0)(|sinx|)/(x) is equal to