Home
Class 12
MATHS
The derivative of the function f(x)=cos^...

The derivative of the function `f(x)=cos^(-1)((1)/(sqrt(13))(2cos x-3sin x))+sin^(-1)((1)/(sqrt(13))(2cos x+3sin x)),` with respect to `sqrt(1+x^(2))` at `x=(3)/(4)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of the function, f(x)=cos^(-1){(1)/(sqrt(13))(2cosx-3sinx)}+sin^(-1){(1)/(sqrt(13))(2cosx+3sinx)}w.r.tsqrt(1+x^(2)) is

If f(x)=cos^(-1)((1)/(sqrt(13)))(2cos x-3sin x)+sin^(-1)((1)/(sqrt(13)))(2cos x+3sin x)wdot rt sqrt(1+x^(2)) then find (df(x))/(dx) at x=(3)/(4)

The derivative of the function, f(x)=cos^(-1){(1)/(sqrt13)(2cosx-3sinx)}+sin^(-1){(1)/(sqrt13)(2cosx+3sinx)}w.r.t.sqrt(1+x^(2)) at x=(3)/(4) is

sqrt(3)cos x-sin x=1

The function f(x)=sqrt(cos(sin x))+sin^(-1)((1+x^(2))/(2x)) is defined for:

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

If (2+sqrt(3))cos x=1-sin x then x=

Find the domain of the function f(x)=sqrt(1-2x)+3sin^(-1)((3x-1)/(2))

Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to sin^(-1) (3x - 4x^(3)) is