Home
Class 12
MATHS
If y=e^(x) sin 3x ,then (d^(2)y)/(dx^(2)...

If `y=e^(x) sin 3x ,then (d^(2)y)/(dx^(2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If y=e^(x)sin 5x , the find (d^(2)y)/(dx^(2)) .

If y=e^(4x) sin 3x , find (d^(2)y)/(dx^(2)).

If y=e ^(-2x) sin ^(3) x , then (d^(2)y)/dx^(2) =

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

y=e^(x)"sin"5x then find (d^2y)/(dx^(2)) .

If y= sin x+cos x then (d^(2)y)/(dx^(2)) is :-

If y= sin x+cos x then (d^(2)y)/(dx^(2)) is :-