Home
Class 12
MATHS
If M=[[1, 1, 1], [1, 1, 1], [1, 1, 1]], ...

If `M=[[1, 1, 1], [1, 1, 1], [1, 1, 1]]`, then `M^(50)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If M=[(1,1,1),(1,1,1),(1,1,1)] ,then what is M^50 ?

Let M be a 3xx3 matrix satisfying M[[0], [1] ,[0]]=[[-1], [2], [3]] , M[[1],[-1], [0]]=[[1], [1],[-1]],and M[[1], [1], [1]]=[[0] ,[0], [12]] Then the sum of the diagonal entries of M is _________.

Let M be a 3xx3 matrix satisfying M[[0], [1] ,[0]]=[[-1], [2], [3]] , M[[1],[-1], [0]]=[[1], [1],[-1]] ,and M[[1], [1], [1]]=[[0] ,[0], [12]] Then the sum of the diagonal entries of M is _________.

Let M be a 3xx3 matrix satisfying M[[0], [1] ,[0]]=[[-1], [2], [3]] , M[[1],[-1], [0]]=[[1], [1],[-1]] ,and M[[1], [1], [1]]=[[0] ,[0], [12]] Then the sum of the diagonal entries of M is _________.

Let M be a 3xx3 matrix satisfying M[[0], [1], [0]]=M[[1], [-1], [0]]=[[1], [1], [-1]] , and M[[1], [1], [1]]=[[0], [0], [12]] Then the sum of the diagonal entries of M is _________.

Let M be a 3xx3 matrix satisfying M[0 1 0]=[-1 2 3] ,M[1-1 0]=[1 1-1],a n dM[1 1 1]=[0 0 12] Then the sum of the diagonal entries of M is _________.

If minR and mgt=2 then prove that |[1,1,1] , [C(m,1), C(m+1,1), c(m+2,1)] , [C(m,2), C(m+1,2), C(m+2,2)]|=1

If the triangle ABC whose vertices are A(-1,1,1), B(1,-1,1) and C(1,1,-1) is projected on XY plane and the area of the projected triangle is m then find (m(m+1))/(2)