Home
Class 11
MATHS
if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx)...

if `y=sqrt(x) + 1/sqrt(x)`, then `(dy)/(dx)` at x=1 is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)

If y =sqrt(x) + (1)/(sqrt(x)) , "then" 2 x . (dy)/(dx) is equal to

If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to

If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to

If y=e^(sqrt(x))+e^(-sqrt(x)) , then (dy)/(dx) is equal to -

If y=e^(sqrt(x))-e^(-sqrt(x))," then "(dy)/(dx) is equal to

If y = x^sqrt(x) , "then "(dy)/(dx) is equal to

If y= (sqrt(x) + 1/sqrt(x))^2 .Find dy/(dx)

If y=sqrt((1-x)/(1+x)), then (dy)/(dx) equals-

If y = sin^(-1) sqrt(1-x) , then (dy)/(dx) is equal to