Home
Class 12
MATHS
The range f(x)=cos2x-sin2x contains the ...

The range `f(x)=cos2x-sin2x` contains the set

A

[2, 4]

B

`[-1, 1]`

C

`[-sqrt(2), sqrt(2)]`

D

`(-sqrt(2),2)`

Text Solution

Verified by Experts

The correct Answer is:
C

Let f(x)=cos2x-sin2x
`f(x)=(1)/(sqrt(2))[sqrt(2)cos2x-sin2x]`
`f(x)=sqrt(2)[(1)/(sqrt(2))cos2x-(1)/(sqrt(2))sin2x]`
`f(x)=sqrt(2)[cos.(pi)/(4)cos2x-sin.(pi)/(4)sin2x]`
`f(x)=sqrt(2)[cos((pi)/(4)+2x)]`
We know, `-1lecos((pi)/(4)+2x)le1`
`implies-sqrt(2)lesqrt(2)cos((pi)/(4)+2x)lesqrt(2)`
`implies-sqrt(2)lef(x)lesqrt(2)`
`therefore " Range of "f(x)=[-sqrt(2),sqrt(2)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=cos x-sin x is

Let f(x)=cos x sin2x then

Let f(x)=cos x sin2x, then

Range of f(x)=2cos^(2)x+sin x-8 is

The range of cos^(2)x+sin^(4)x is

The range of f(x)=sin^(2)x+cos^(4)x

The range of f(x)=sin^(2)+cos^(4)x is