Home
Class 12
MATHS
What is the value of log9(27)+log8(32)...

What is the value of `log_9(27)+log_8(32)`

A

`(7)/(2)`

B

`(19)/(6)`

C

4

D

7

Text Solution

Verified by Experts

The correct Answer is:
B

`log_(9)27+log_(8)32`
`=log_(9)3^(3)+log_(8)2^(5)`
`=3log_(9)3+5log_(8)2`
`3log_((3^(""^(2))))3+5log_((2^(""^(3))))2`
`(3)/(2)log_(3)3+(5)/(3)log_(2)2`
`(3)/(2)+(5)/(3)=(19)/(6)`
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of log_(32)27xxlog_(243)8 ?

What is the value of (log_(27)9xxlog_(16)64)/(log_(4)sqrt(2)) ?

What is the value of (log_(27)9xxlog_(16)64)/(log_(4)sqrt(2)) ?

What is the value of x if log_(3)x+log_(9)x+log_(27)x+log_(81)x=(25)/(4)?

What is the value of log_(10)(9/8)-log_(10)((27)/(32))+log_(10)(3/4) ?

What is the value of 2log_(8)2-(1)/(3)log_(3)9 ?

What is the value of log_(10)((9)/(8))-log_(10)((27)/(32))+log_(10)((3)/(4)) ?