Home
Class 12
MATHS
If y=e^(x^(2))sin2x, then what is (dy)/(...

If `y=e^(x^(2))sin2x`, then what is `(dy)/(dx)` at `x=pi` equal to?

A

`(1+pi)e^(pi^(2))`

B

`2pie^(pi^(2))`

C

`2e^(pi^(2))`

D

`e^(pi^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = e^{x^2} \sin(2x) \) and evaluate it at \( x = \pi \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u \) and \( v \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = u'v + uv' \] ### Step 1: Identify the functions Let: - \( u = e^{x^2} \) - \( v = \sin(2x) \) ### Step 2: Find the derivatives \( u' \) and \( v' \) 1. **Finding \( u' \)**: \[ u = e^{x^2} \implies u' = e^{x^2} \cdot \frac{d}{dx}(x^2) = e^{x^2} \cdot 2x \] 2. **Finding \( v' \)**: \[ v = \sin(2x) \implies v' = \cos(2x) \cdot \frac{d}{dx}(2x) = \cos(2x) \cdot 2 = 2\cos(2x) \] ### Step 3: Apply the product rule Now, substituting \( u, v, u', \) and \( v' \) into the product rule: \[ \frac{dy}{dx} = u'v + uv' = (e^{x^2} \cdot 2x) \sin(2x) + e^{x^2} (2\cos(2x)) \] ### Step 4: Simplify the expression \[ \frac{dy}{dx} = 2x e^{x^2} \sin(2x) + 2 e^{x^2} \cos(2x) \] ### Step 5: Factor out common terms \[ \frac{dy}{dx} = 2 e^{x^2} (x \sin(2x) + \cos(2x)) \] ### Step 6: Evaluate at \( x = \pi \) Now, we need to evaluate \( \frac{dy}{dx} \) at \( x = \pi \): \[ \frac{dy}{dx} \bigg|_{x = \pi} = 2 e^{\pi^2} \left( \pi \sin(2\pi) + \cos(2\pi) \right) \] ### Step 7: Calculate the trigonometric values - \( \sin(2\pi) = 0 \) - \( \cos(2\pi) = 1 \) Substituting these values: \[ \frac{dy}{dx} \bigg|_{x = \pi} = 2 e^{\pi^2} \left( \pi \cdot 0 + 1 \right) = 2 e^{\pi^2} \cdot 1 = 2 e^{\pi^2} \] ### Final Answer Thus, the value of \( \frac{dy}{dx} \) at \( x = \pi \) is: \[ \frac{dy}{dx} \bigg|_{x = \pi} = 2 e^{\pi^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if y=e^(x^(2)) then, what is (dy)/(dx) at x=pi equal to

if y=e^(2x)sin3x then find (dy)/(dx)

If y=e^(sin x) ,the value of (dy)/(dx) at x=(pi)/(2) is

If y=4e^(x)sin((pi)/(2))+5^(x) then (dy)/(dx)=

If f(x)=|cos x|+|sin x|, then (dy)/(dx) at x=(2 pi)/(3) is equal to

If y=e^(tan x(ln sin x)) then (dy)/(dx) is equal to

If y=sin^(-1)(sin x), then (dy)/(dx) at x=(pi)/(2) is

If y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)) , what is (dy)/(dx) equal to?