Home
Class 12
MATHS
If f(x) = ln (x - sqrt(1 + x^(2))), then...

If `f(x) = ln (x - sqrt(1 + x^(2)))`, then what is `int f''(x)` dx equal to ?

A

`(1)/((x - sqrt(1 + x^(2)))) + c`

B

`-(1)/(sqrt(1 + x^(2))) + c`

C

`-sqrt(1 + x^(2)) + c`

D

`ln (x - sqrt(1+x^(2))) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral of the second derivative of the function \( f(x) = \ln(x - \sqrt{1 + x^2}) \). We will follow these steps: ### Step 1: Find the first derivative \( f'(x) \) Using the chain rule and the properties of logarithmic differentiation, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \ln(x - \sqrt{1 + x^2}) \right) \] Using the derivative of \( \ln(u) \) which is \( \frac{1}{u} \cdot \frac{du}{dx} \): Let \( u = x - \sqrt{1 + x^2} \). Then, \[ \frac{du}{dx} = 1 - \frac{x}{\sqrt{1 + x^2}} \] Thus, \[ f'(x) = \frac{1}{x - \sqrt{1 + x^2}} \cdot \left( 1 - \frac{x}{\sqrt{1 + x^2}} \right) \] ### Step 2: Simplify \( f'(x) \) Now we simplify \( f'(x) \): \[ f'(x) = \frac{1 - \frac{x}{\sqrt{1 + x^2}}}{x - \sqrt{1 + x^2}} \] This can be further simplified, but for our purpose, we will proceed to find the second derivative. ### Step 3: Find the second derivative \( f''(x) \) Now we differentiate \( f'(x) \) to find \( f''(x) \): Using the quotient rule: \[ f''(x) = \frac{(v \cdot u' - u \cdot v')}{v^2} \] Where \( u = 1 - \frac{x}{\sqrt{1 + x^2}} \) and \( v = x - \sqrt{1 + x^2} \). Calculating \( u' \) and \( v' \): 1. \( u' = -\frac{\sqrt{1 + x^2} - \frac{x^2}{\sqrt{1 + x^2}}}{1 + x^2} = -\frac{1}{(1 + x^2)^{3/2}} \) 2. \( v' = 1 - \frac{x}{\sqrt{1 + x^2}} \) Substituting these into the quotient rule gives us \( f''(x) \). ### Step 4: Integrate \( f''(x) \) Now we need to integrate \( f''(x) \): \[ \int f''(x) \, dx = f'(x) + C \] Where \( C \) is the constant of integration. ### Step 5: Substitute back to find \( f'(x) \) Since we have already derived \( f'(x) \), we can express our final answer: \[ \int f''(x) \, dx = f'(x) + C = \frac{1 - \frac{x}{\sqrt{1 + x^2}}}{x - \sqrt{1 + x^2}} + C \] ### Final Answer Thus, \[ \int f''(x) \, dx = f'(x) + C \]

To solve the problem, we need to find the integral of the second derivative of the function \( f(x) = \ln(x - \sqrt{1 + x^2}) \). We will follow these steps: ### Step 1: Find the first derivative \( f'(x) \) Using the chain rule and the properties of logarithmic differentiation, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \ln(x - \sqrt{1 + x^2}) \right) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) = 2^(x) , then what is int_(2)^(10) (f '(x))/(f(x))dx equal to ?

If f(x) satisfics f(1)=f(4), the what is int_(1)^(4)f '(x) dx equal to?

If f(x) = sqrt(4x^(2)+4x-3) then int(x+3)/(f(x))dx is equal

If int(dx)/(f(x)) = log {f(x)}^(2) + c , then what is f(x) equal to ?

If int(dx)/(f(x))=log{f(x)}^(2)+c , then what is f(x) equal to ?

Let f(x)=log(x+sqrt(x^(2)+1)), then f'(x) equals.

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If f(x)=int 2-(1)/(1+x^(2))-(1)/(sqrt(1+x^(2)))dx , then f is