Home
Class 12
MATHS
The integral int(1+x-1/x)e^(x+1/x)dx is...

The integral `int(1+x-1/x)e^(x+1/x)dx` is equal to (1) `(x-1)e^(x+1/x)+C` (2) `x e^(x+1/x)+C` (3) `(x+1)e^(x+1/x)+C` (4) `-x e^(x+1/x)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(1+x-1/x)e^(x+1/x)dx is equal to a) (x-1)e^(x+1/x)+c b) xe^(x+1/x)+c c) (x+1)e^(x+1/x)+c d) -xe^(x+1/x)+c

The integral int(1+x-(1)/(x))e^(x+(1)/(x))dx is equal to (1)(x-1)e^(x+(1)/(x))+C(2)xe^(x+(1)/(x))+C(3)(x+1)e^(x+(1)/(x))+C(2)-xe^(x+(1)/(x))+C

int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + C c) - x e^(x) + C d) ( x+1)e^(-x) +C

int(x-1)\ e^(-x)\ dx is equal to x e^x+C (b) x e^x+C (c) -x e^(-x)+C (d) x e^(-x)+C

int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)-(1)/(x))+c (b) x e^(x^(2)-(1)/(x))+c (c) (2x-1) e^(x^(2)-(1)/(x))+c (d) (2x+1) e^(x^(2)-(1)/(x))+c

int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)-(1)/(x))+c (b) x e^(x^(2)-(1)/(x))+c (c) (2x-1) e^(x^(2)-(1)/(x))+c (d) (2x+1) e^(x^(2)-(1)/(x))+c

int e^(x)((x-2)/((x-1)^(2)))dx is equal to (i) (e^(x))/(x-1)+C (ii) (e^(x))/((x-1)^(2))+C( iii) (2e^(x))/((x-1)^(2))+C( iv )(e^(x)-1)/(x-1)+C

int e^x((x^2+1))/((x+1)^2)dx is equal to (a) ((x-1)/(x+1))e^x+c (b) e^x((x+1)/(x-1))+c e^x(x+1)(x-1)+c (d) none of these

Integrate int(e^(x-1)+x^(e-1))/(e^x+x^e)dx

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to