Home
Class 10
MATHS
The value of x in the eqaution log2 (x) ...

The value of x in the eqaution `log_2 (x) +log_4(x) +log_(16) x=21/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the real value of x in the eqaution, log_2 80- log_2 5 = log_3 x ?

The value of x :satisfying the equation log_(4)(2log_(2)x)+log_(2)(2log_(4)x)=2 is

Find the real values (s) of x satisfying the equation log_(2x)(4x)+log_(4x)(16x)=4 .

The sum of solutions of the equation log_(2)x log_(4)x log_(6)x=log_(2)x*log_(4)x+log_(4)x log_(6)x+log_(6)x*log_(2)x is equal to

The possible value of x satisfying the equation log_(2)(x^(2)-x)log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is

Solve the following equation : log_2 x+log_4 x+log_16 x=21/24

log_(x)4+log_(x)16+log_(x)64=12

if log_(2)x+log_(4)x+log_(16)x=(21)/(4) find x

Integral value of x which satisfies the equation =log_(6)54+log_(x)16=log_(sqrt(2))x-log_(36)((4)/(9))is.