Home
Class 12
MATHS
A circle has a radius of log(10) (a^2)...

A circle has a radius of `log_(10) (a^2)` and a circumference of `log_(10)(b^4).` The value of `log_a b` is equal to (a)`1/(4pi)` (b) `1/pi` (c) `pi` (d) `2pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

A circle has a radius of log_(10)(a^(2)) and a circumference of log_(10)(b^(4)). The value of log_(a)b is equal to (a)(1)/(4 pi) (b) (1)/(pi) (c) pi (d) 2 pi

A circle has radius log_(10)(a^(2)) and a circumference of log_(10)(b^(4)) . Then the value of log_(a)b is equal to :

A circle has radius log_(10)(a^(2)) and a circumference of log_(10)(b^(4)) . Then the value of log_(a)b is equal to :

The value of 1/(log_3pi)+1/(log_4pi) is

The value of (1)/(log_(3)pi) + (1)/(log_(4)pi) is

The value of (1)/(log_(3)pi)+(1)/(log_(4)pi)

The area of a circle of circumference C is (a) (C^2)/(4pi) (b) (C^2)/(2pi) (c) (C^2)/pi (d) (4C^2)/pi