Home
Class 10
MATHS
(2x+3)/(2x+5)-x/(x+1)=1/(2x+3),(x!=-1, x...

`(2x+3)/(2x+5)-x/(x+1)=1/(2x+3),(x!=-1, x!=- 5/2, x!=- 3/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )

2 ((2x-1) / (x + 3))-3 ((x + 3) / (2x-1)) = 5

Evaluate (x + 2)/((x + 1)(2x+ 3)) - (2x + 3)/((x + 1)(x + 2)) + (3x + 5)/((2x + 3)(x + 2))

(x-1)/(3)+(2x+5)/(6)=(3x-6)/(9)-(2x-5)/(2)

solve for x (2x-5)/(3x-1)=(2x-1)/(3x+2)

Check whether the following are quadratic equations : (1) (x-3)^(2)=x(2x-5) (2) (2x-3)(8x+1) = (4x+5)(4x-5) (3) (5x+3)(x-2)=(4x+3)(2x-1) (4) (2x+5)^(3)=8(x-1)^(3) (5) x^(2)+7x-8=x(x+5) (6) x^(3)+9x^(2)-7x+2=(x+3)^(3)

(5x)/(3)-(x-2)/(3)=(9)/(4)-(1)/(2)(x-(2x-1)/(3))

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Observe the following pattern (1x2)+(2x3)=(2x3x4)/(3)(1x2)+(2x3)+(3x4)=(3x4x5)/(3)(1x2)+(2x3)+(3x4)+(4x5)=(4x5x6)/(3) and find the of (1x2)+(2x3)+(3x4)+(4x5)+(5x6)