Home
Class 12
MATHS
If vec a , vec ba n d vec c are non-co...

If ` vec a , vec ba n d vec c` are non-coplanar unit vectors such that ` vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2))` , then the angle between ` vec aa n d vec b` is a. `3pi//4` b. `pi//4` c. `pi//2` d. `pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec b and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)) , then the angle between vec a and vec b is a. 3pi//4 b. pi//4 c. pi//2 d. pi

If vec a , vec b and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)) , then the angle between vec a and vec b is a. 3pi//4 b. pi//4 c. pi//2 d. pi

If vec a,vec b and vec c are non-coplanar unit vectors such that vec a xx(vec b xxvec c)=(vec b+vec c)/(sqrt(2)), then the angle between vec a and vec b is a.3 pi/4b. pi/4 c.pi/2d. pi

If vec a , vec b ,and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec b and vec c are non-parallel, then prove that the angle between vec a and vec b, is 3pi//4.

If vec a , vec b ,a n d vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec ba n d vec c are non-parallel, then prove that the angel between vec aa n d vec bi s3pi//4.

If vec a , vec b ,and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec b and vec c are non-parallel, then prove that the angel between vec a and vec b, is 3pi//4.

If vec a , vec b ,and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec b and vec c are non-parallel, then prove that the angel between vec a and vec b, is 3pi//4.

If vec a,vec b, and vec c are non-coplanar unit vectors such that vec a xx(vec b xxvec c)=(vec b+vec c)/(sqrt(2)),vec b and vec c are non parallel,then prove that the angel between vec a and vec b is 3 pi/4

If vec a and vec b are unequal unit vectors such that ( vec a- vec b)xx[( vec b+ vec a)xx(2 vec a+ vec b)]= vec a+ vec b , then angle theta between vec aa n d vec b is 0 b. pi//2 c. pi//4 d. pi

If vec a and vec b are unequal unit vectors such that ( vec a- vec b)xx[( vec b+ vec a)xx(2 vec a+ vec b)]= vec a+ vec b , then angle theta between vec aa n d vec b is 0 b. pi//2 c. pi//4 d. pi