Home
Class 12
MATHS
If u= sin^(-1)((x^(4) + y^(4))/(x^(2) + ...

If `u= sin^(-1)((x^(4) + y^(4))/(x^(2) + y^(2)))` and f= sin u then f is a homogenous function of degree _________

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x,y)=(1)/(x+y) is a homogeneous function of degree

Show that f (x,y) = (2x ^(2) -y ^(2))/sqrt(x ^(2) + y ^(2)) is a homogeneous function of degree 1.

f ( x , y ) = sin − 1 ( x y ) + tan − 1 ( y x ) is homogeneous function of degree:

f (x,y)=sin ^(-1) ((x)/(y)) + tan ^(-1) ((y)/(x)) is homogeneous function of degree:

Show that F(x,y)=(x^2+5xy-10y^2)/(3x+7y) is a homogeneous function of degree 1.

Show that f(x, y) =x sqrt(x^(2)+y^(2))-y^(2) is a homogeneous function of x and y.

True or false: The function F(x,y)=ysin(y/x)-x is a homogenous function of degree 1.

If f(x,y)= (x-y)/(x+y) then write the degree of the homogenous function (df)/(dy) .