Home
Class 12
MATHS
Let x=log0.75(148/111) and y=(cos(pi/4-t...

Let `x=log_0.75(148/111) and y=(cos(pi/4-theta)-cos(pi/4+theta))/(sin((2pi)/3+theta)-sin((2pi)/3-theta)` then `(x-y)` is the tangent of the angle

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (cos(pi+theta)cos(-theta))/(sin (pi-theta) cos (pi/2+ theta))= cot^2 theta.

If "cosec"(pi//2+ theta )+x cos theta cot(pi//2-theta )=sin(pi//2+ theta ), then x =

2cos((pi)/(2)-theta)+3sin((pi)/(2)+theta)-(3sin theta+2cos theta)=

Prove that : cos (pi/4- theta)cos (pi/4-phi)-sin(pi/4-theta) sin (pi/4-phi)= sin (theta+phi) .

Prove that (cos (pi-theta).cot(pi/2 +theta).cos(-theta))/(tan(pi+theta).tan((3pi)/(2)+theta).sin(2pi-theta))=cos theta

sin""((pi)/2+ theta ) * cos (pi- theta ) * cot ""((3pi)/(2)+ theta ) - sin""((pi)/2- theta ) * sin""((3pi)/2 - theta ) * cot ""((pi)/2 + theta ) =

If (x)/(cos theta)=(y)/(cos(theta-(2pi)/(3)))=(z)/(cos(theta+(2pi)/(3))), then x+y+z=

If sin(pi cos theta) = cos(pi sin theta) , then of the value cos(theta- pi/4) is

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

If tan((pi)/(2) sin theta)=cot((pi)/(2)cos theta) then sin(theta +(pi)/(4))=