Home
Class 11
MATHS
Let f:[4,oo)to[4,oo) be defined by f(x)=...

Let `f:[4,oo)to[4,oo)` be defined by `f(x)=5^(x^((x-4)))`.Then `f^(-1)(x)` is

A

`2-sqrt(4-logs x)`

B

`2+sqrt(4+logs x)`

C

`((1)/5)^(x^(x+4))`

D

not defined

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse function \( f^{-1}(x) \) for the function \( f(x) = 5^{x^{(x-4)}} \), we will follow these steps: ### Step 1: Set up the equation Let \( y = f(x) \). Thus, we have: \[ y = 5^{x^{(x-4)}} \] ### Step 2: Take the logarithm Taking the logarithm (base 5) of both sides gives: \[ \log_5(y) = x^{(x-4)} \] ### Step 3: Rearranging the equation We can rearrange the equation to express it as: \[ x^{(x-4)} = \log_5(y) \] ### Step 4: Rewrite in terms of \( x \) We need to solve for \( x \). To do this, we will rewrite the equation: \[ x^{(x-4)} - \log_5(y) = 0 \] ### Step 5: Use the quadratic formula To solve for \( x \), we can express \( x^{(x-4)} \) in a different form. Let’s denote \( z = x \) and rewrite the equation: \[ z^{(z-4)} = \log_5(y) \] This can be transformed into a quadratic equation in terms of \( z \): \[ z^2 - 4z - \log_5(y) = 0 \] ### Step 6: Apply the quadratic formula Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1 \), \( b = -4 \), and \( c = -\log_5(y) \): \[ z = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-\log_5(y))}}{2 \cdot 1} \] ### Step 7: Simplify the expression Calculating the discriminant: \[ z = \frac{4 \pm \sqrt{16 + 4\log_5(y)}}{2} \] This simplifies to: \[ z = 2 \pm \sqrt{4 + \log_5(y)} \] ### Step 8: Choose the positive root Since \( f(x) \) is defined for \( x \geq 4 \) and the output must also be valid in the range, we choose the positive root: \[ x = 2 + \sqrt{4 + \log_5(y)} \] ### Step 9: Substitute back for \( f^{-1}(x) \) Substituting back \( y \) with \( x \) gives: \[ f^{-1}(x) = 2 + \sqrt{4 + \log_5(x)} \] ### Final Answer Thus, the inverse function is: \[ f^{-1}(x) = 2 + \sqrt{4 + \log_5(x)} \]

To find the inverse function \( f^{-1}(x) \) for the function \( f(x) = 5^{x^{(x-4)}} \), we will follow these steps: ### Step 1: Set up the equation Let \( y = f(x) \). Thus, we have: \[ y = 5^{x^{(x-4)}} \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|49 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|10 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If the function f:[1,oo)to[1,oo) is defined by f(x)=2^(x(x-1)) then f^(-1) is

If the function, f:[1,oo]to [1,oo] is defined by f(x)=3^(x(x-1)) , then f^(-1)(x) is

If f:[1,oo)rarr[1,oo) is defined as f(x)=3^(x(x-2)) then f^(-1)(x) is equal to

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=x^(3)

Let f :[2,oo)to {1,oo) defined by f (x)=2^(x ^(4)-4x ^(3))and g : [(pi)/(2), pi] to A defined by g (x) = (sin x+4)/(sin x-2) be two invertible functions, then f ^(-1) (x) is equal to

Let f :[2,oo)to {1,oo) defined by f (x)=2^(x ^(4)-4x ^(3))and g : [(pi)/(2), pi] to A defined by g (x) = (sin x+4)/(sin x-2) be two invertible functions, then The set "A" equals to

OBJECTIVE RD SHARMA-FUNCTIONS-Chapter Test
  1. Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))).Then f^(-1)(x) i...

    Text Solution

    |

  2. The number of bijective functions from set A to itself when A contains...

    Text Solution

    |

  3. If f(x)=|sin x| then domain of f for the existence of inverse of

    Text Solution

    |

  4. The functions f:[-1/2, 1/2] to [-pi/2, pi/2] defined by f(x)=sin^(-1)(...

    Text Solution

    |

  5. Let f : R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(...

    Text Solution

    |

  6. If f: (e,oo) rarr R & f(x)=log[log (logx)], then f is -

    Text Solution

    |

  7. Let f: R-{n}->R be a function defined by f(x)=(x-m)/(x-n) such that m!...

    Text Solution

    |

  8. The inverse of the function f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2 is given ...

    Text Solution

    |

  9. Find the inverse of the function :y=(1 0^x-1 0^(-x))/(1 0^x+1 0^(-x))+...

    Text Solution

    |

  10. Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

    Text Solution

    |

  11. Let f:R to R, g: R to R be two functions given by f(x)=2x-3,g(x)=x^(3)...

    Text Solution

    |

  12. If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

    Text Solution

    |

  13. If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))), then

    Text Solution

    |

  14. Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2). Then f...

    Text Solution

    |

  15. Let f:(-oo,2] to (-oo,4] be a function defined by f(x)=4x-x^(2). Then,...

    Text Solution

    |

  16. The inverse of the function of f:R to R given by f(x)=log(a) (x+sqrt(x...

    Text Solution

    |

  17. f:R to R is defined by f(x)==(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(...

    Text Solution

    |

  18. If f(x)=log((1+x)/(1-x)), "then f "((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  19. If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to

    Text Solution

    |

  20. The function f:R to R given by f(x)=x^(2)+x is

    Text Solution

    |

  21. Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for ...

    Text Solution

    |