Home
Class 11
MATHS
The functions f:[-1/2, 1/2] to [-pi/2, p...

The functions `f:[-1/2, 1/2] to [-pi/2, pi/2]` defined by `f(x)=sin^(-1)(3x-4x^(3))` is

A

bijection

B

injection but not a surjection

C

surjection but not and injection

D

neither an injection nor a surjection

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sin^{-1}(3x - 4x^3) \) defined on the interval \( x \in [-\frac{1}{2}, \frac{1}{2}] \). ### Step-by-Step Solution: 1. **Identify the function and its domain**: We have \( f(x) = \sin^{-1}(3x - 4x^3) \) and the domain is \( x \in [-\frac{1}{2}, \frac{1}{2}] \). 2. **Substitute \( x \) with \( \sin \theta \)**: Let \( x = \sin \theta \). Then, we need to determine how \( \theta \) varies when \( x \) is in the given interval. - When \( x = -\frac{1}{2} \), \( \theta = \sin^{-1}(-\frac{1}{2}) = -\frac{\pi}{6} \). - When \( x = \frac{1}{2} \), \( \theta = \sin^{-1}(\frac{1}{2}) = \frac{\pi}{6} \). Thus, \( \theta \) varies from \( -\frac{\pi}{6} \) to \( \frac{\pi}{6} \). 3. **Rewrite the function in terms of \( \theta \)**: Substitute \( x = \sin \theta \) into the function: \[ f(x) = \sin^{-1}(3\sin \theta - 4\sin^3 \theta) \] We can use the identity for \( \sin 3\theta \): \[ \sin 3\theta = 3\sin \theta - 4\sin^3 \theta \] Therefore, we have: \[ f(x) = \sin^{-1}(\sin 3\theta) \] 4. **Determine the range of \( 3\theta \)**: Since \( \theta \) varies from \( -\frac{\pi}{6} \) to \( \frac{\pi}{6} \), we can find the range of \( 3\theta \): \[ 3\left(-\frac{\pi}{6}\right) < 3\theta < 3\left(\frac{\pi}{6}\right) \] This simplifies to: \[ -\frac{\pi}{2} < 3\theta < \frac{\pi}{2} \] 5. **Apply the property of the inverse sine function**: Since \( \sin^{-1}(\sin x) = x \) for \( x \) in the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \), we have: \[ f(x) = 3\theta \] Substituting back for \( \theta \): \[ f(x) = 3\sin^{-1}(x) \] 6. **Conclusion about the function**: The function \( f(x) = 3\sin^{-1}(x) \) is defined for \( x \in [-\frac{1}{2}, \frac{1}{2}] \) and maps to the range \( [-\frac{3\pi}{6}, \frac{3\pi}{6}] = [-\frac{\pi}{2}, \frac{\pi}{2}] \). Thus, \( f \) is a bijective function (one-to-one and onto).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|48 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

The function f:[-1//2,\ 1//2]->[-pi//2,pi//2\ ] defined by f(x)=sin^(-1)(3x-4x^3) is (a) bijection (b) injection but not a surjection (c) surjection but not an injection (d) neither an injection nor a surjection

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

Let f be a function defined on [-(pi)/(2), (pi)/(2)] by f(x) = 3 cos^(4) x-6 cos^(3) x - 6 cos^(2) x-3 . Then the range of f(x) is

If f:[(pi)/(2),(3 pi)/(2)]rarr[-1,1] and is defined by f(x)=sin x,thenf^(-1)(x) is given by

Function f : [(pi)/(2), (3pi)/(2)] rarr [-1, 1], f(x) = sin x is

Function f[(1)/(2)pi, (3)/(2)pi] rarr [-1, 1], f(x) = cos x is

Let the function f be defined by f(x)=((2x+1)/(1-3x)) then f^(-1)(x) is

Let f : [-(pi)/(2), (pi)/(2)] rarr [3, 11] defined as f(x) = sin^(2)x + 4 sin x + 6 . Show that f is bijective function.

The function f(x)=-(x)/(2)+sin x defined on [-(pi)/(3),(pi)/(3)] is

If f:(-(pi)/(2),(pi)/(2))rarr(-oo,oo) is defined by f(x)=tan x then f^(-1)(2+sqrt(3))=

OBJECTIVE RD SHARMA-FUNCTIONS-Chapter Test
  1. The number of bijective functions from set A to itself when A contains...

    Text Solution

    |

  2. If f(x)=|sin x| then domain of f for the existence of inverse of

    Text Solution

    |

  3. The functions f:[-1/2, 1/2] to [-pi/2, pi/2] defined by f(x)=sin^(-1)(...

    Text Solution

    |

  4. Let f : R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(...

    Text Solution

    |

  5. If f: (e,oo) rarr R & f(x)=log[log (logx)], then f is -

    Text Solution

    |

  6. Let f: R-{n}->R be a function defined by f(x)=(x-m)/(x-n) such that m!...

    Text Solution

    |

  7. The inverse of the function f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2 is given ...

    Text Solution

    |

  8. Find the inverse of the function :y=(1 0^x-1 0^(-x))/(1 0^x+1 0^(-x))+...

    Text Solution

    |

  9. Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

    Text Solution

    |

  10. Let f:R to R, g: R to R be two functions given by f(x)=2x-3,g(x)=x^(3)...

    Text Solution

    |

  11. If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

    Text Solution

    |

  12. If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))), then

    Text Solution

    |

  13. Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2). Then f...

    Text Solution

    |

  14. Let f:(-oo,2] to (-oo,4] be a function defined by f(x)=4x-x^(2). Then,...

    Text Solution

    |

  15. The inverse of the function of f:R to R given by f(x)=log(a) (x+sqrt(x...

    Text Solution

    |

  16. f:R to R is defined by f(x)==(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(...

    Text Solution

    |

  17. If f(x)=log((1+x)/(1-x)), "then f "((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  18. If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to

    Text Solution

    |

  19. The function f:R to R given by f(x)=x^(2)+x is

    Text Solution

    |

  20. Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for ...

    Text Solution

    |