Home
Class 11
MATHS
If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+co...

If `f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R`, then f(2010)

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the function \( f(x) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x} \) for \( x = 2010 \), we will first simplify the function \( f(x) \). ### Step 1: Rewrite the function We start with: \[ f(x) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x} \] ### Step 2: Use trigonometric identities Recall that \( \sin^2 x + \cos^2 x = 1 \). We can express \( \sin^4 x \) and \( \cos^4 x \) in terms of \( \sin^2 x \) and \( \cos^2 x \): \[ \sin^4 x = (\sin^2 x)^2 \quad \text{and} \quad \cos^4 x = (\cos^2 x)^2 \] ### Step 3: Substitute \( \sin^2 x \) and \( \cos^2 x \) Let \( a = \sin^2 x \) and \( b = \cos^2 x \). Then \( a + b = 1 \). We can rewrite the function as: \[ f(x) = \frac{a^2 + b}{a + b^2} \] ### Step 4: Substitute \( b = 1 - a \) Substituting \( b \) gives: \[ f(x) = \frac{a^2 + (1 - a)}{a + (1 - a)^2} \] Simplifying the numerator: \[ = \frac{a^2 + 1 - a}{a + (1 - 2a + a^2)} = \frac{a^2 - a + 1}{a^2 - a + 1} \] ### Step 5: Simplify the expression Since the numerator and the denominator are the same, we have: \[ f(x) = 1 \] ### Step 6: Evaluate \( f(2010) \) Since \( f(x) = 1 \) for all \( x \) in \( \mathbb{R} \), we can conclude that: \[ f(2010) = 1 \] Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|48 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(cos^(2)x+sin^(4)x)/(sin^(2)x+cos^(4)x) for x in R then f(2016)=

If f(x)=(cos^(2)x+sin^(4)x)/(sin^(2)x+cos^(4)), for x in R, then f(2002) is equal to

If f(x)=(cos^(2)x+sin^(4)x)/(sin^(2)x+cos^(4)x) for x varepsilon R then f=

If f(x) =(cos^2x +sin^4x)/(sin^2x +cos^4x) for x in R then f(2020) =

f'(sin^(2)x)lt f'(cos^(2)x) for x in

Define f: R to R by f(x) = (sin^(2)x + cos^(4)x)/(cos^(2)x + sin^(4)x) , then the range of f consists of exactly ………….. Element(s).

If f(x) =sin^(4)x+cos^(4)x increases, if

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

OBJECTIVE RD SHARMA-FUNCTIONS-Chapter Test
  1. If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

    Text Solution

    |

  2. If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))), then

    Text Solution

    |

  3. Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2). Then f...

    Text Solution

    |

  4. Let f:(-oo,2] to (-oo,4] be a function defined by f(x)=4x-x^(2). Then,...

    Text Solution

    |

  5. The inverse of the function of f:R to R given by f(x)=log(a) (x+sqrt(x...

    Text Solution

    |

  6. f:R to R is defined by f(x)==(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(...

    Text Solution

    |

  7. If f(x)=log((1+x)/(1-x)), "then f "((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  8. If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to

    Text Solution

    |

  9. The function f:R to R given by f(x)=x^(2)+x is

    Text Solution

    |

  10. Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for ...

    Text Solution

    |

  11. The function of f:R to R, defined by f(x)=[x], where [x] denotes the g...

    Text Solution

    |

  12. Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

    Text Solution

    |

  13. Let X and Y be subsets of R,the set of all real numbers. The function ...

    Text Solution

    |

  14. If the functions of f and g are defined by f(x)=3x-4 and g(x)=2+3x the...

    Text Solution

    |

  15. If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R, then f(20...

    Text Solution

    |

  16. The function f: R -> R is defined by f(x) = cos^2x + sin^4x for x in R...

    Text Solution

    |

  17. A = { x // x in R, x != 0, -4 <= x <= 4 and f: A -> R is defined by f...

    Text Solution

    |

  18. If f:R to R and g:R to R are defined by f(x)=(2x+3) and g(x)=x^(2)+7, ...

    Text Solution

    |

  19. Let f(x) be defined on [-2,2] and is given by f(x)={{:(,-1,-2 le x l...

    Text Solution

    |

  20. The function f:RR -> RR defined by f(x) = 6^x + 6^(|x|) is

    Text Solution

    |