Home
Class 11
MATHS
If C(0), C(1), C(2),..., C(n) are binom...

If `C_(0), C_(1), C_(2),..., C_(n)` are binomial coefficients
in the expansion of `(1 + x)^(n), ` then the value of
`C_(0) - (C_(1))/(2) + (C_(2))/(3) - (C_(3))/(4) +...+ (-1)^(n) (C_(n))/(n+1)` is

A

0

B

`(1)/(n+ 1)`

C

`(2^(2))/(n+1)`

D

`(-1)/(n+1)`

Text Solution

Verified by Experts

The correct Answer is:
b

We have ,
`C_(0) - (C_(1))/(2) + (C_(2))/(3) - (C_(3))/(4) +...+ (-1)^(n) (C_(n))/(n+1)`
`sum_(r=0)^(n) (-1)^(r) (C_(n))/(n+1)`
`sum_(r=0)^(n) ((-1)^(r))/(r +1) .""^(n)C_(r)`
`sum_(r=0)^(n) ((-1)^(r))/(r +1).(n+1)/(r+1) .""^(n)C_(r)`
`= (1)/(n+1) sum_(r=0)^(n) (-1)^(r) .""^(n+1)C_(r+1)" "[because ""^(n+1)C_(r+1)=(n+1)/(r+1).""^(n)C_(r)]`
` (1)/(n+1) sum_(r=0)^(n) ((-1)^(r))/(r +1) .""^(n)C_(r)`
`(1)/(n+1)[""^(n+1)C_(1)-""^(n+1)C_(2)+""^(n+1)C_(3)-""^(n+1)C_(4)+...+(-1)^(n) ""^(n+1)C_(n +1)]`
`= - (1)/(n+1) [-""^(n+1)C_(1)+""^(n+1)C_(2)-""^(n+1)C_(3)+""^(n+1)C_(4)-...+(-1)^(n) ""^(n+1)C_(n +1)]`
`-(1)/(n+1) [""^(n+1)C_(0)-0""^(n+1)C_(1)+""^(n+1)C_(2)-""^(n+1)C_(3)+...+(-1)^(n+1) ""^(n+1)C_(n +1)}-""^(n+1)C_(0)]`
`= (1)/(n+1) {0 - ""^(n+1)C_(0)} = (1)/(n+1)` .
Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(o)C_(1),C_(2),......,C_(n) denote the binomial coefficients in the expansion of (1+x)^(n), then the value of sum_(r=0)^(n)(r+1)C_(r) is

If C_(0), C_(1), c_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0) + (C_(1))/(2) + C_(2)/(3) + ...+ (C_(n))/(n+1) or, sum_(r=0)^(n) (C_(r))/(r+ 1)

If C_(0), C_(1) C_(2) ….., denote the binomial coefficients in the expansion of (1 + x)^(n) , then (C_(0))/(2) - (C_(1))/(3) + (C_(2))/(4)- (C_(3))/(5)+...+ (-1)^(n)(C_(n))/(n+2) =

If C_(0), C_(1), C_(2), …, C_(n) are the coefficients in the expansion of (1+x)^(n) , then what is the value of C_(1) +C_(2) +C_(3) + …. + C_(n) ?

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0),C_(1),C_(2),...,C_(n) denote the binomial coefficientsin the expansion of (1+x)^(n), then (C_(0))/(2)-(C_(1))/(3)+(C_(2))/(4)-(C_(3))/(5)+......+(-1)^(n)(C_(n))/(n+2)=