Home
Class 11
MATHS
For any n in N, let C(r) stand for ""^(n...

For any n `in` N, let `C_(r)` stand for `""^(n)C_(r)`,
` r = 0,1,2,3,…,n` and let `S= sum_(r=0)^(n) (1)/(C_(r))`
Statement-1: `underset(0leilt i le n)(sumsum) ((i)/(C_(i))+(j)/(C_(j)))= (n^(n))/(2)S`
Statement-2:` underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= nS`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
a

We have,
`underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= sum_(i=0)^(n-1) (n-i)/(C_(i) )+ sum_(j=1)^(n) (j)/(C_(j))`
`rArr underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= n sum_(i=0)^(n-1) (1)/(C_(i) )- sum_(i=0)^(n) (i)/(C_(i)) + sum_(j=1)^(1)(j)/(C_(j))`
`rArr underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= nsum_(i=0)^(n-1) (1)/(C_(i) )+(n)/(C_(n))`
`rArr underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= nsum_(i=0)^(n-1) (1)/(C_(i) )=nS`
So, statement-2 is true.
Let `S_(1) underset(0leiltj len) (sumsum) ((i)/(C_(i))+(j)/(C_(j)))` . Then
`S_(1) underset(0leiltj len) (sumsum) ((n-i)/(C_(n-i))+(n-j)/(C_(n-j)))` .
`rArr S_(1) = n underset(0leiltj len) (sumsum) ((1)/(C_(n-i))+(1)/(C_(n-j)))- underset(0leiltj len) (sumsum)((i)/(C_(n-i))+(j)/(C_(n-j)))`
`rArr S_(1) = n underset(0leiltj len) (sumsum) ((1)/(C_(i))+(1)/(C_(j)))- underset(0leiltj len) (sumsum)((i)/(C_(i))+(j)/(C_(j)))`
`rArr S_(1) = n(nS) - S_(1)` [ Using truth of statement-2]
`rArr 2S_(1) = n^(2) S rArr S_(1) = (n^(2))/(2)S`
So, statement-1 is true and stetement-2 is a correct expanation
for statement-1.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|107 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|100 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA|Exercise Exercise|29 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = sum_(r=0)^(n) C_(r),x^(r) , then prove that (sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r)) .

Find the sum sum_(0<=i

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

underset(r=0)overset(n-1)(sum)(.^(n)C_(r))/(.^(n)C_(r)+.^(n)C_(r+1)) equals

Find the sum sum sum_(0<=i<=j<=n)^(n)C_(i)^(n)C_(j)

Find the sum sum_(i=0)^(r)*^(n_(1))C_(r-i).^(n_(2))C_(i)

If k=underset(r=0)overset(n)(sum)(1)/(.^(n)C_(r)) , then underset(r=0)overset(n)(sum)(r)/(.^(n)C_(r)) is equal to

Find the sum sum_(0<=i