Home
Class 11
MATHS
Let a, b, c be the sides of DeltaABC opp...

Let a, b, c be the sides of `Delta`ABC opposite to angles
A, b,C respecitvely.
Let `alpha = sum_(r=0)^(n) ""^(n)C_(r) b^(n-r) c^(r) cos{rB - (n-r)C}`
and `beta = sum_(r=0)^(n) ""^(n)C_(r) b^(n-r) c^(r) sin{rB - (n-r)C}`
Statement -1: `alpha = alpha^(n)`
Statement-2: `beta = alpha^(n)`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
c

We have,
`alpha + i beta = sum_(r=0)^(n) ""^(n)C_(r) b^(n-r) c^(r) e^(i[rB -(n-r)C])`
`rArr alpha + i beta= sum_(r=0)^(n) ""^(n)C_(r) (be^(-ic))^(n-r) (ce^(iB))^%(r)`
`rArr alpha + i beta= (b e ^(-iC) + ce^(iB))^(n)`
`rArr alpha + i beta = {(b cos C + c cos B) + i (-b sin C + csin B)}^(n)`
`rArr alpha + i beta = (a + i0)^(n)` "" `[{:(because a = b cos C + c sin B),( " "&(b)/(sinB) = (c)/(sinC)):}]`
`rArr alpha + i beta = a^(n)`
`rArr alpha = a^(n) and beta = 0.`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|107 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|100 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA|Exercise Exercise|29 Videos

Similar Questions

Explore conceptually related problems

Evaluate sum_(r=0)^(n) ""^(n+r)C_(n) .

Evaluate : sum_(r = 1)^(n) ""^(n)C_(r) 2^r

Statement-1 sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1) Statement-2: sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

What is sum_(r=0)^(1) ""^(n+r)C_(n) equal to ?

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)